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The paper discusses the model of transverse vibrations of a pipe induced by flow velocity
pulsation. The motion is described by a system of two non-linear partial differential equ-
ations with periodically variable coefficients. The analysis uses the Galerkin method with
orthogonal polynomials as the shape functions. The instability regions are determined by
Floquet’s method. The influence of selected parameters on natural frequencies and on the
character and level of vibrations is studied. The possibility of the excitation of periodic and
quasi-periodic oscillations is demonstrated. The results of theoretical analysis are compared
with the experimental data.
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1. Introduction

Vibrations in hydraulic systems may be induced by fluid flows as well as mechanical sources
of vibration. Components of hydraulic systems such as pumps, hydraulic engines and valves
generate pulsation of fluid flow. On the other hand, vibrations in the system can be induced by
unbalanced and misaligned rotating parts of the drive system as well as time variable forces and
moments acting upon the hydraulic system components.
Vibrations of hydraulic pipes can be caused by factors associated with fluid flow or due to

mechanical excitations. Vibrating elements such as hydraulic pumps as well as vibration of the
supporting structure can become the source of kinematic excitations. Vibration propagation is
facilitated by a rigid connection between the frame, system components and interconnecting
pipes and hoses.
Furthermore, hydraulic lines are subjected to loads and vibrations caused by fluid flow.

These include pulse loads resulting from valve operation (e.g. water hammer effect) as well as
time varying forces resulting from pressure pulsation.
As regards certain critical flow parameters (velocity, pressure) in a particular line, the condi-

tions can arise leading to the loss of stability (Holmes, 1978). The critical values depend mainly
on the structure and geometry of the pipe or hose. In turn, the parametric resonance phenome-
non occurs when the fluid flow velocity changes periodically (Gregory and Paidoussis, 1966a,b).
The phenomenon can occur at a specific amplitude and frequency of pulsation flow and at a
sufficiently high flow velocity.
The pipe model with a pulsating fluid flow was first investigated by Ginsberg (1973) for

pinned-pinned pipes, then by Paidoussis and Issid (1974) for cantilevered pipes and by Paidoussis
and Sundararajan (1975) for clamped-clamped pipes. The calculation results were then verified
by the authors of the experiment (Paidoussis and Issid, 1976).
In their work, Semler and Paidoussis (1994) compared the underlying assumptions and de-

rivation procedures employed by authors of several publications on the subject of non-linear
dynamic behaviour of cantilevered and clamped-clamped pipes. They also discussed the ade-
quacy of equations derived by different authors and proposed the most complete equation for
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the clamped-clamped pipe. The comprehensive survey of modelling methods is given in the
monograph (Paidoussis, 1998).

Dynamic behaviour of continuous systems, such as beams, moving tapes or pipes with the
flowing fluid is governed by non-linear partial differential equations with appropriate boundary
and initial conditions. In general, the exact solutions are impossible and hence approximate
methods need to be developed. Thus obtained results have to be verified experimentally.

This paper focuses on the development of effective methods for testing the impact of system
parameters on the range of the instability areas and elevated levels of vibration. In the available
literature, there are few results of such research. Typically, the dynamic analysis is carried out
for fixed values of the system (Gorman et al., 2000; Lee and Chung, 2002; Panda and Kar, 2008),
alternatively, bifurcation diagrams are obtained, showing the influence of the selected parameter
(one-parameter diagrams) on the type of thus induced vibrations (Wang, 2009). Few works only
summarize the results of testing how two concurrent parameters should affect the stability of
linear systems. For example, Kadoli and Canesan (2004) tested the effect of temperature on the
regions of stability in the plane determined by the flow velocity and flow pulsation frequency
using the Floquet method.

In this paper, the effectiveness of the proposed methods was verified by numerical calculations
carried out for the hose model. Predicted results were compared with experimental data.

2. The model of the system

Equations of motion of a hose conveying fluid and fixed on both ends are based on the following
assumptions: the hose diameter is small compared with its length, which allows the Euler-
Bernoulli beam model to be used, the shape and dimensions of the hose cross-section remain
unchanged, the hose motion takes place in the plane, the fluid is incompressible, the fluid velocity
is constant in the hose cross-section and does not change along its length.

Fig. 1. Model of the system

The model of the investigated system is shown in Fig. 1. For the description of transverse and
longitudinal vibrations of the hose of length l, the coordinates w(x, t) and u(x, t) are introduced.
The relative motion of the fluid is determined by the velocity Uf (t). Differential equations of
motion can be derived from the law of momentum. For this purpose, the fluid element and the
hose element are analysed separately.

The fluid element with a unit mass mf is subjected to applied pressure forces pA (where:
p – pressure, A – cross-section area) and normal and tangential components of internal forces
acting in the fluid-hose system. Apart from the internal forces, the hose element of a unit mass mp
is subjected to the action of transverse forces Q, axial forces T and bending moments M .
Adding the respective sides of the equations of motion of the fluid and the hose, gives equations
independent on the internal forces
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where the absolute derivatives present in Eqs. (2.1) are derived from the following formulas
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where v(x, t) = u(x, t) or v(x, t) = w(x, t). The angle ϕ, indicating the direction of the tangent
to the pipe axis depends on the coordinates u and w.

Fig. 2. Fluid and pipe elements

For brevity, differentiation with respect to the variable t is marked by a dot and differentia-
tion with respect to the variable x is indicated by a prime symbol. To determine the value of
the axial force T and the bending moment M , the influence of internal damping is taken into
account, basing on the Voigt-Kelvin hypothesis

T = Ts + EAp(ε+ αε̇) M = −EIp(ϕ
′ + αϕ̇′) (2.3)

where Ts is the static component and α is the damping coefficient. The transverse force Q is
derived from the relevant equation by taking into account the axial strain ε of neutral line

Q = (1 + ε)−1M ′ (2.4)

where the axial strain ε can be determined from the dependence

ε =
√

(1 + u′)2 + w′2 − 1 (2.5)

Equations (2.1)-(2.5) are the starting point for deriving approximate equations that describe
hose vibration induced by the flow. They can sometimes be reduced to two non-linear partial
differential equations. Taking into account the approximate formula proposed by Paidoussis
(1998), we get

(pA− T )′ = −mf U̇f (2.6)

These equations are not dependent on the flow resistance. Assuming that the axial displacements
are an order smaller than the transverse displacements w ∼ O(ǫ), u ∼ O(ǫ2), ǫ≪ 1, then when
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non-linear terms in the Taylor series are expanded, the equations describing the vibrations of
the hose with an accuracy of O(ǫ3) become
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In particular, for Uf = const and α = 0, Eqs. (2.7) are identical to those proposed by Paidoussis
(2003). Equations (2.7) contain variable coefficients on account of the dependence of the flow
velocity Uf on time. The velocity change was assumed to be harmonic

Uf = Uf0[1 +AU sin(ωt)] (2.8)

where Uf0 and ω are the mean velocity and frequency and AU is the dimensionless amplitude
of pulsation.

3. The method of analysis

Non-linear partial differential equations (2.7) are solved by the Galerkin method (Czerwiński
and Łuczko, 2012; Lee and Chung, 2002; Łuczko and Czerwiński, 2012; Udar and Datta, 2007),
assuming an approximate solution

w(x, t) =
N
∑

j=1

ϕj(x)zj(t) u(x, t) =
N
∑

j=1

ψj(x)yj(t) (3.1)

The shape functions ϕj(x) and ψj(x) must satisfy the boundary conditions and should
create a complete set of functions. In the case of simply supported pipes, the trigonometric
functions can be used, yet when the analysis of non-linear problems involves different boundary
conditions, polynomial functions may prove more appropriate. To construct the approximating
polynomial function, a system of linearly independent functions φ1(x), φ2(x), . . . , φN (x) is deve-
loped, satisfying certain boundary conditions in the interval (0, l). A polynomial form of these
functions is assumed

φj(x) = a0j + a1jx+ a2jx
2 + · · ·+ aj+3,jx

j+3 =
j+3
∑

k=0

akjx
k j = 1, 2, . . . , N (3.2)

Functions describing the transverse displacement must satisfy four boundary conditions. These
boundary conditions being applied, for any parameters a4j , a5j , . . . , anj , where n = j + 3 the
first four coefficients a0j , a1j , a2j , a3j of solutions (3.2) can be determined. For a fixed-fixed hose,
the following boundary conditions have to be satisfied

φj(0) = φ
′

j(0) = φj(l) = φ
′

j(l) = 0 (3.3)
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Conditions for x = 0 finally yield a0j = a1j = 0. For other boundary conditions (for x = l), we
get the equation

a2j + a3j = −
j+3
∑

k=4

akj 2a2j + 3a3j = −
j+3
∑

k=4

kakj (3.4)

determining the coefficients a2j and a3j in the polynomial of the degree j + 3. It can be
assumed: akj = 1 for 4 ¬ k ¬ j + 3 (j = 1, 2, . . . , N). Thus the obtained polynomials are not
orthogonal. The base of orthonormal polynomials ϕ1(x), ϕ2(x), . . . , ϕN (x) is typically obtained
by the Gram-Schmidt orthogonalization method. The subsequent polynomials are defined by
the recurrent formula
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and ϑ1(x) = φ1(x). In the case of a linear model, the transverse vibration equation is not
dependent on the variable u. Therefore, the linear analysis can be carried out by investigating
the equation of transverse vibrations only. With the Galerkin method being applied and the
vector z = [z1, z2, . . . , zN ]

T introduced, the system of ordinary differential equations can be
rewritten in a concise matrix form

z̈+Bż+Cz = 0 (3.7)

where C is the stiffness matrix and B takes into account the damping and gyroscopic effects.
When the numerical methods are applied in stability analysis, the solution to Eq. (3.7) is expres-
sed as

v̇ = Av (3.8)

where

v =

[

z

ż

]

A =

[

0 I

−C −B

]

(3.9)

Using numerical procedures, the eigenvalues of the matrix A can be derived accordingly.
The imaginary parts of the eigenvalues define the natural frequencies whilst the sign of the real
parts gives information as to the stability of solutions.
Since Eq. (3.8) is a linear equation with periodically variable coefficients (period T = 2π/ω)

the stability regions can be determined by Floquet’s method. For that purpose, the monodromy
matrix is derived M = F(T ), defined by the fundamental matrix F, satisfying the following
differential matrix equation

dF

dτ
= AF (3.10)

and the boundary conditions

F(0) = I (3.11)
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The eigenvalues µk of the monodromy matrix, referred to as characteristic multipliers of the
system, determine the stability of periodic solutions. When at least one multiplier satisfies the
inequality |µk| > 1, the solution will be unstable. The characteristic multipliers are obtained by
solving the following eigenvalue problem

(M− µI)u = 0 (3.12)

Analysing the condition |µk| > 1, the instability regions can be determined in the space of
selected system parameters.

4. The results of numerical simulations and experiments

The numerical procedure was applied and experimental tests were performed on a model of an
elastic hose fixed on both ends. The parameters considered in the study were: hose length
l = 1.92m, outside diameter dz = 0.021m, inside diameter dw = 0.0127m, hose density
ρp = 1870 kg/m

3, oil density ρf = 900 kg/m
3. The Young modulus obtained experimentally

was equal to E = 20MPa, axial force T0 = 80N and the damping coefficient α = 0.05 s.
Throughout the experimental and numerical procedure, the average flow rate Uf0 was varied in
the range 0-8m/s, the pressure at the end of the hose p0 varied in the range (0-10MPa), the
frequency of velocity pulsation f varied in the range (2-50Hz) and the relative amplitude of
pulsation AU ranged from 0.15 to 0.25.
To find out how the natural frequencies and the instability ranges depend on those para-

meters, the linear model described by differential equation (3.7) with variable coefficients is
investigated. The Galerkin method is employed and the first five modes of vibration are con-
sidered with the shape functions being assumed in form of orthogonal polynomials (3.5). The
instability regions are determined by the numerical approach using Floquet’s theory. The na-
tural frequencies were determined assuming the fixed flow velocity and the stability tests were
performed assuming that the flow velocity should vary in time in accordance with formula (2.8).
When testing the influence of parameters on the stability of solutions, it is required that the

monodromy matrix elements should be determined by numerically integrating matrix equation
(3.10) in a recursive procedure. To ensure the required accuracy level and to minimize the
calculation time, it is recommended to use analytical formulas to determine the elements of
the matrices B and C. These formulas are derived using the Maple 9 package. The program,
written in Fortran, uses the procedures from the IMSL library to support numerical integration
(Runge-Kutty-Verner’s method of the 5th and 6th order and the Adams and Gear’s method)
and to solve the eigenvalue problems (QR algorithm applied to the matrix A in the Hessenberg
format).

To verify the numerical simulation results, an experimental setup was designed as shown in
Fig. 3, allowing the control of the average flow velocity, pressure, amplitude and frequency of
velocity pulsation. The liquid flow is generated by a multi-piston pump (II) driven by an electric
motor (I). The variable capacity pump together with the accumulator (III) and the overflow
valve (IV) are parts of the supply system with the stabilised, voltage-controlled pressure. The
output from the supply system is connected to the input of the proportional directional control
valve (Parker Df Plus). The valve enables most precise regulation of the flow rate in proportion
to the applied input voltage. The fluid flows through the investigated hose (VII). Behind the
hose, a throttling valve (VIII) is provided to stabilise the required pressure value.
The parameters associated with the flow (flow velocity, pressure) and the hydraulic hose

dynamics are determined using the set of transducers. Flow velocity in the hose was computed
basing on the flow rate readouts (from the flow rate meter Q) and the hose cross-section area.
Pressure measurements (pressure transducers p1 and p2) were taken at two points, directly
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Fig. 3. Schematic of the experimental setup: I – electric motor, II – pump, III – hydropneumatic
accumulator, IV – overflow valve, V – proportional directional control valve, VI – hydropneumatic

accumulator, VII – investigated hose, VIII – throttling valve

upstream and downstream the hose section. The hose vibration parameters were measured with
accelerometers (a1/2 and a1/4) located at the hose mid-length and at 1/4 of its length. Measu-
rements of the hose temperature were taken with a contact sensor (a K-type thermocouple).

Signals from the transducers were fed to the computer via an A/D (NI USB-6009) card.
Signal acquisition and processing was supported by the program DasyLab 11. Supported by the
D/A card (NI USB-6009), the computer handled the settings of the pump and of the overflow
valve and generated the control signal to the proportional directional control valve (using a
voltage-regulated function generator).

In order that numerical and experimental data could be compared, the dimensional quantities
were used even though the calculations were run on dimensionless ones. The first step was to
establish the influence of flow velocity and pressure at the hose end on natural frequencies of the
hose filled with the fluid flowing at a fixed rate. The results obtained in the analysis of linear
model (3.8) are shown in Fig. 4.

Fig. 4. The influence of flow velocity on natural frequencies: (a) p0 = 2MPa, (b) p0 = 4Mpa

It appears that the parameters Uf0 and p0 influence the natural frequencies of vibrations to
a large extent. As the mean flow velocity increases, all frequencies tend to decrease whilst the
fundamental frequency will be the first one to become zero. Decreasing frequency with increased
flow velocity is the effect of the centrifugal inertia force (the term U2fw

′′ in Eq. (2.7)2, acting in
opposite direction to the elasticity force. Flow velocity for which the natural frequency is zero
is referred to as the critical velocity.
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In the range of flow velocities higher than the critical velocity, the plots of frequency in Fig. 4
have interesting properties. The linear model in unstable in this range, yet when nonlinearities
arising in this region are considered, some vibrations with limited amplitudes will become po-
ssible, too. The analysis of mode coefficients reveals that in the sub-critical range, subsequent
frequencies correspond to particular modes of vibrations (3.5). In the post-critical range, a given
mode is typically a combination of two or more modes.

Figure 4 gives the values of the first free natural frequencies obtained by running an expe-
riment on a real object. In the laboratory conditions, the near-critical velocities could not be
attained (the maximal velocity being about 10m/s). Despite this limitation, it is reasonable to
suppose that the values of characteristic parameters of the model were correct.

Results obtained for linear model (3.8) and for the non-linear one, governed by Eqs. (2.7),
are compared in Fig. 5. Figure 5a illustrates the influence of flow velocity and flow pulsation
frequency on the range of instability regions, determined according to Floquet’s theory. Figure 5b
demonstrates the influence of those parameters on the rms value of vibration velocity Vz in the
direction transverse to the hose axis at the point distant from its attachment by 1/4 of its length.
The graphs are plotted for p0 = 2MPa and AU = 0.2.

Figures 5a and 5b also plot the graphs of ω = (ωn + ωm)/k (n,m = 1, 2, . . . , 5; k = 1, 2, . . .)
for selected values of n, m, k (the curves nm k expressing the dependence between the excita-
tion frequency and combinations of natural frequencies). The form of the plots nm k depends
on the average flow velocity Uf0. For the excitation frequency that satisfies the above relation-
ships, the parametric resonance phenomenon should arise (Mailybayev and Seyranian, 2001;
Udar and Datta, 2007). For example, for n = m = k = 1 we get the fundamental resonance
(ω = 2ω1 – plot 11 1), and for n = k = 1, m = 2 combination resonances will appear
(ω = ω1 + ω2 – plot 12 1).

Fig. 5. The influence of flow velocity and flow pulsation frequency: (a) instability regions µmax, (b) rms
value of vibration velocity Vz [m/s]

The distribution of the plane of parameters is sufficiently dense and uniform (200 × 200
points). The smoothness of curves limiting the instability regions (the plots of the maximal
values of the characteristic multiplier µmax – Fig. 5a) and the zones of increased vibration level
(Fig. 5b) prove the adequacy of the adopted approach. In the shaded areas (Fig. 5a) at least
one of the characteristic multipliers is larger than one and hence in those areas the solutions to
differential equation (3.8) will be unstable. Instability regions determined by Floquet’s method
envelop the curves nm k and expand with the increasing average flow velocity Uf0.
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The linear analysis allows the stable regions to be promptly determined whilst the analysis of
the non-linear model gives the properties of generated vibrations. In this case, the indicators can
be derived that are associated with the amplitude of generated signals, and their dependence on
the system parameters can be analysed accordingly. Furthermore, the character of the vibrations
can be analysed as well as spectral analysis can be made in the case of periodic vibrations.
The plot in Fig, 5 is restricted to the sub-critical velocity range (the critical value

Uf0 ≈ 24m/s – Fig. 4a), so the plotted results can be used only in the study of the para-
metric resonance phenomenon. The regions of increased vibration levels (Fig. 5b) agree well
with the region of unstable solutions (Fig. 5b) based on the simplified model analysis.
Apart from the five regions of principal parametric resonance corresponding to the subsequent

vibration modes (around the curves nm k), the investigated frequency range reveals the areas of
combination resonance (in the proximity of plot curves 12 1, 13 1, 23 1, 25 1, 45 1). The width
of all these regions tends to increase with the flow pulsation frequency though the parametric
resonance effect will occur in a higher frequency range provided that flow velocity is sufficiently
large. The highest level of vibration intensity is registered for high flow velocities (the darkest
areas in Fig. 5b). For velocities nearing the critical value, vibrations are excited regardless of
the actual flow pulsation frequency but their character tends to change (these are often chaotic
vibrations). However, as the critical values could not be attained in the experiments, no numerical
results are provided.
To verify the model, the experimental results were compared with those predicted theoreti-

cally. In the course of experimental tests, the response of the system to excitations of variable
frequency was obtained using the function generator sweep. The rms velocity values were esta-
blished at two points distant from the attachment points by 1/4 and 1/2 of the hose length l.
The parameters that were varied included the pressure p0 at the end of the hose, the average
flow velocity Uf0 and the dimensionless amplitude AU (related to Uf0) of pulsation. During the
tests, the oil temperature was stabilised (55◦C-65◦C on the average). Selected results are shown
in Figs. 6a, 7a and 8a.

Fig. 6. The influence of flow pulsation frequency on the rms value of vibration velocity Uf0 = 6m/s,
p0 = 2MPa, AU = 0.2: (a) experimental results, (b) simulation results

Fig. 7. The influence of flow pulsation frequency on the rms value of vibration velocity Uf0 = 8m/s,
p0 = 2MPa, AU = 0.2: (a) experimental results, (b) simulation results
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Fig. 8. The influence of flow pulsation frequency on the rms value of vibration velocity Uf0 = 8m/s,
p0 = 2MPa, AU = 0.25: (a) experimental results, (b) simulation results

The numerical procedure involved the modelling of the sweep generator, assuming the iden-
tical simulation time as in the experiments. The results corresponding to those summarized
in Figs. 6a, 7a and 8a are shown in Figs. 6b, 7b and 8b. The continuous line applies to the
measurement point x = l/4, the dotted line – to the point x = l/2.
Comparison of the results shows a good correspondence between the predicted and experi-

mental results. Rms velocity values obtained by the numerical procedure and experimentally are
similar, and so is similar the distribution of the relevant resonance ranges.
It is worthwhile to mention a relatively high sensitivity of the system to variations of certain

parameters (internal damping) and to simulation time. For example, after a longer simulation
time, more distinctive parametric resonance will be registered in the low frequency range (below
15Hz), both in the numerical and experimental procedures. However, the experiments must not
be too long either, because of a sharp increase in the oil and hose temperature which may change
the properties of the system.
As the average flow velocity decreases (Figs. 6, 7), the probability of the parametric resonance

occurrence is reduced, too. Actually, only the type 33 1 resonance is revealed in the diagrams.
Vibrations excited in the system have the frequency twice as large as the third natural frequency,
which corresponds to the third mode of vibrations.
As the pulsation amplitude increases (Figs. 7, 8), the ranges of the parametric resonance

tend to expand. The experimental diagrams reveal new resonance effects in the ranges predicted
by the theoretical methods.
A thorough analysis of the plotted diagrams reveals certain discrepancies between the experi-

mental and numerical data. For example, two resonance ranges are revealed on the experimental
plots in the frequency range 14-28 Hz, whilst the plots of simulation results show four such ranges
(resonance 22 1, 23 1, 33 1, 34 1 or 25 1). Such close proximity of the principal and combination
resonances causes that some of them will merge in the case of real objects. Further analogies are
well apparent in Figs. 8a and 8b.

5. Conclusions

A thorough analysis of the numerical and experimental data leads us to the following conclusions:

• Liquid flow through a hose at near-critical velocities or higher gives rise to large-amplitude
vibrations which, in most severe cases, may cause the hydraulic system to be damaged.

• At flow velocities below the critical value, parametric vibrations will be generated in a
certain frequency range. In the low frequency range of the applied excitation, enveloping
the principal and secondary resonances, the frequency of vibration is equal to half of the
flow pulsation frequency or equal to it. In the higher frequency range, parametric resonance
effects appear too, and are associated with subsequent natural frequencies of the system.
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In this frequency range, the periodic vibrations will be excited, including sub-harmonic
vibrations of various orders as well as quasi-periodic ones. Of particular interesting are the
vibration modes registered in the combination resonance ranges.

• Major determinants of the extent of parametric resonance ranges and their distribution
include flow velocity, pressure, internal damping, amplitude and frequency of flow pulsa-
tion.

• Comparison of the numerical and experimental results seems to confirm the adequacy
of the adopted model of the system. The fundamental physical phenomena detectable
by experimental methods were confirmed numerically. Besides, quantitative indicators of
vibrations (rms velocity values) are well correlated too. Minor discrepancies revealed on
the diagrams may be attributed on one hand to difficulties involved in assessment of the
hose parameters and, on the other, to spatial features of vibration in certain ranges of the
excitation frequency.

• Methods employed in the analysis, using the orthogonal polynomials as shape functions,
allow a reliable qualitative assessment in a relatively short time. The stability testing
method, based on Floquet’s characteristic multipliers, proved most effective. They are
determined by numerical integration of matrix equation (3.10) for one period only, making
the numerical procedure much faster.
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